Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 174
Filter
Add more filters

Complementary Medicines
Therapeutic Methods and Therapies TCIM
Publication year range
1.
Fitoterapia ; 174: 105862, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354823

ABSTRACT

Angiotensin I-converting enzyme (ACE) inhibition is currently a common method for the treatment and control of hypertension. In this study, four new (1-4) and one known (5) cycloartane triterpenoids were isolated from the leaves of Swietenia macrophylla by chromatographic techniques and identified by their spectroscopic data and a comprehensive comparison of published data. The triterpenoids were evaluated for their ACE inhibitory potential using in vitro inhibition assays and in silico methods. The inhibition assay and enzyme kinetics results showed that the most active triterpenoid, compound 4, inhibited ACE in a mixed-type manner with an IC50 value of 57.7 ± 6.07 µM. Computer simulations revealed that compound 4 reduces the catalytic efficiency of ACE by competitive insertion into the active pocket blocking the substrate, and the binding activity occurs mainly through hydrogen bonds and hydrophobic interactions. The study showed that S. macrophylla can be a source of bioactive material and the ACE inhibitory triterpenoid could be a potential antihypertensive agent.


Subject(s)
Meliaceae , Triterpenes , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/metabolism , Molecular Docking Simulation , Molecular Structure , Triterpenes/pharmacology , Meliaceae/chemistry , Angiotensins
2.
Food Res Int ; 177: 113836, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225113

ABSTRACT

An acidic beverage was formulated with xanthan gum (XG), pectin (P) and brewer spent grain (BSG) peptides with antioxidant and antihypertensive properties. The impact of hydrocolloids levels on peptide bioaccessibility was studied. Peptides were obtained from BSG using Purazyme and Flavourzyme enzymes. BSG peptides were fractionated by ultrafiltration (UF) and four fractions were obtained: F1 (>10 kDa), F2 (10-5 kDa), F3 (1-5 kDa), and F4 (<1 kDa). F3 showed the highest protein purity, ferulic acid content, proportion of amphipathic peptides, and bioactive properties (ABTS+ radical scavenging and ACE-I inhibitory activity). The identified peptides from F3 by tandem mass spectrometry were 138. In silico analysis showed that 26 identified peptides had ABTS+ inhibitory activity, while 59 ones presented good antihypertensive properties. The effect of XG and P levels on bioaccessibility of F3 peptides in the formulated beverages was studied by a central composite experimental design. It was observed that F3 peptides interacted with hydrocolloids by electrostatic forces at pH of formulated beverages. The addition of hydrocolloids to formulation modulated the release of the antioxidant peptides and protected the degradation of ACE-I inhibitory peptides from F3 during simulated gastrointestinal digestion. Finally, the level of hydrocolloids that produced intermediate viscosities in the formulated beverages improved the bioaccessibility of the F3 peptides.


Subject(s)
Antihypertensive Agents , Antioxidants , Benzothiazoles , Polysaccharides, Bacterial , Sulfonic Acids , Antihypertensive Agents/chemistry , Antioxidants/analysis , Hydrolysis , Angiotensin-Converting Enzyme Inhibitors/chemistry , Pectins/analysis , Protein Hydrolysates/chemistry , Peptides/chemistry , Edible Grain/chemistry , Colloids/analysis
3.
Molecules ; 28(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37894610

ABSTRACT

Angiotensin-converting enzyme 1 (ACE1) is a peptide involved in fluid and blood pressure management. It regulates blood pressure by converting angiotensin I to angiotensin II, which has vasoconstrictive effects. Previous studies have shown that certain compounds of natural origin can inhibit the activity of angiotensin-converting enzymes and exert blood pressure-regulating effects. Surface Plasmon Resonance (SPR) biosensor technology is the industry standard method for observing biomolecule interactions. In our study, we used molecular simulation methods to investigate the docking energies of various herbal metabolites with ACE1 proteins, tested the real-time binding affinities between various herbal metabolites and sACE1 by SPR, and analyzed the relationship between real-time binding affinity and docking energy. In addition, to further explore the connection between inhibitor activity and real-time binding affinity, several herbal metabolites' in vitro inhibitory activities were tested using an ACE1 activity test kit. The molecular docking simulation technique's results and the real-time affinity tested by the SPR technique were found to be negatively correlated, and the virtual docking technique still has some drawbacks as a tool for forecasting proteins' affinities to the metabolites of Chinese herbal metabolites. There may be a positive correlation between the enzyme inhibitory activity and the real-time affinity detected by the SPR technique, and the results from the SPR technique may provide convincing evidence to prove the interaction between herbal metabolites and ACE1 target proteins.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Biosensing Techniques , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Surface Plasmon Resonance , Biosensing Techniques/methods , Angiotensins
4.
Peptides ; 167: 171046, 2023 09.
Article in English | MEDLINE | ID: mdl-37330111

ABSTRACT

The pearl garlic (Allium sativum L.) protein (PGP) was digested using pepsin, trypsin, α-chymotrypsin, thermolysin, and simulated gastrointestinal digestion. The α-chymotrypsin hydrolysate showed the highest angiotensin-I-converting enzyme inhibitory (ACEI) activity, with an IC50 value of 190.9 ± 11 µg/mL. A reversed-phase C18 solid-phase extraction (RP-SPE) cartridge was used for the first fractionation, and the S4 fraction from RP-SPE showed the most potent ACEI activity (IC50 =124.1 ± 11 3 µg/mL). The S4 fraction was further fractionated using a hydrophilic interaction liquid chromatography SPE (HILIC-SPE). The H4 fraction from HILIC-SPE showed the highest ACEI activity (IC50 =57.7 ± 3 µg/mL). Four ACEI peptides (DHSTAVW, KLAKVF, KLSTAASF, and KETPEAHVF) were identified from the H4 fraction using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and their biological activities were appraised in silico. Among the identified α-chymotryptic peptides, DHSTAVW (DW7), derived from I lectin partial protein, exhibited the most potent ACEI activity (IC50 value of 2.8 ± 0.1 µM). DW7 was resistant to simulated gastrointestinal digestion, and it was classified as a prodrug-type inhibitor according to the preincubation experiment. The inhibition kinetics indicated that DW7 was a competitive inhibitor, which was rationalized by the molecular docking simulation. The quantities of DW7 in 1 mg of hydrolysate, S4 fraction, and H4 fraction were quantified using LC-MS/MS to give 3.1 ± 0.1, 4.2 ± 0.1, and 13.2 ± 0.1 µg, respectively. The amount of DW7 was significantly increased by 4.2-fold compared with the hydrolysate, which suggested that this method is efficient for active peptide screening.


Subject(s)
Garlic , Hypertension , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Protein Hydrolysates , Chromatography, Liquid , Molecular Docking Simulation , Tandem Mass Spectrometry , Peptides/pharmacology , Peptides/chemistry , Peptidyl-Dipeptidase A/chemistry
5.
J Agric Food Chem ; 71(30): 11476-11490, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37384918

ABSTRACT

Pomegranate (Punica granatum L.) is associated with numerous health benefits due to its high levels of antioxidant polyphenolic substances. Since pomegranate extract has been shown to inhibit angiotensin-converting enzyme (ACE), the potential inhibitory effect of most of its main constituents against ACE is unknown. Therefore, we tested the activities of 24 major compounds, the majority of which significantly inhibited ACE. Notably, pedunculagin, punicalin, and gallagic acid were the most effective ACE inhibitors with IC50 values of 0.91, 1.12, and 1.77 µM, respectively. As demonstrated in molecular docking studies, compounds block ACE by forming multiple hydrogen bonds and hydrophobic interactions with catalytic residues and zinc ions in ACE's C- and N-domains, consequently inhibiting ACE's catalytic activity. Also, the most active pedunculagin stimulated nitric oxide (NO) production, activated the endothelial nitric oxide synthase enzyme (eNOS), and significantly increased eNOS protein expression levels up to 5.3-fold in EA.hy926 cells. Furthermore, pedunculagin increased in cellular calcium (Ca2+) concentration promoted eNOS enzyme activation and reduced the production of reactive oxygen species (ROS). In addition, the active compounds improved glucose uptake in insulin-resistant C2C12 skeletal muscle cells in a dose-dependent manner. The results of these computational, in vitro, and cellular experiments provide further evidence to the traditional medicine that involves using pomegranates to treat cardiovascular diseases like hypertension.


Subject(s)
Hypertension , Pomegranate , Angiotensin-Converting Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Hypertension/drug therapy , Hypertension/metabolism , Peptidyl-Dipeptidase A/metabolism , Antioxidants/chemistry
6.
Chem Biodivers ; 20(4): e202300049, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36866854

ABSTRACT

Resinous beehive product propolis has many biological activities. It contains various aromatic substances that have great differences in their chemical composition depending on the natural flora. Thus, chemical characterization and biological properties of propolis samples is an important subject for the pharmaceutical industry. In this study, the propolis samples collected from three cities in Turkey were prepared as methanol (MEP), ethanol (EEP), chloroform (ChlEP), hexane (HxEP), and ethyl acetate (EAEP) extracts using an ultrasonic assisted technique. The antioxidant capacities of the samples were evaluated by free radical scavenging activity (DPPH), cation radical scavenging activity (ABTS), and reducing activity (CUPRAC) and (FRAP). The strongest biological activities were detected in ethanol and methanol extracts. Enzyme inhibition of the propolis samples were determined against the human glutathione S-transferase (GST) and angiotensin converting enzyme (ACE). IC50 values of MEP1, MEP2, and MEP3 samples against the ACE were found as 13.9 µg/mL, 14.8 µg/mL, and 12.8 µg/mL, while against the GST IC50 values of MEP1, MEP2, and MEP3 samples were as 5.92 µg/mL, 9.49 µg/mL, and 5.72 µg/mL. To know the possible causes of the biological test results advanced LC/MS/MS method was applied. trans-ferulic acid, kaempferol, and chrysin were found as the most abundant phenolic compounds in each sample. The propolis extracts obtained using the proper solvent have a good potential to be used in pharmaceuticals to treat the diseases related to oxidative damage, hypertension, and inflammation. Finally, the interactions between chrysin, trans-ferulic acid and kaempferol molecules with ACE and GST receptors were analyzed using molecular docking study. Selected molecules interact with active residues by binding to the active site of the receptors.


Subject(s)
Antioxidants , Propolis , Humans , Angiotensins , Antioxidants/pharmacology , Antioxidants/chemistry , Ethanol , Kaempferols , Methanol/chemistry , Molecular Docking Simulation , Phenols/pharmacology , Propolis/pharmacology , Propolis/chemistry , Tandem Mass Spectrometry , Angiotensin-Converting Enzyme Inhibitors/chemistry , Glutathione Transferase/antagonists & inhibitors , Glutathione Transferase/chemistry , Plant Extracts/chemistry
7.
J Sci Food Agric ; 103(10): 5019-5027, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-36967483

ABSTRACT

BACKGROUND: Tartary buckwheat protein peptides have been shown to be able to inhibit angiotensin-converting enzyme (ACE), but the exact protein type has been less studied for ACE activity inhibition, and only a few types of ACE inhibitory peptides have been reported. In this study, we purified and identified ACE inhibitory peptides from albumin hydrolysate (AH). RESULTS: Albumin, globulin, prolamin and glutelin were extracted from Tartary buckwheat, and their ACE active peptides were obtained by a pepsin-trypsin sequential hydrolysis process. All four hydrolysates exhibited ACE inhibitory activity, and AH displayed the strongest ACE inhibition activity and the highest peptide yield (82.28%). At 0.2 mg mL-1 , the inhibition rate of AH was 79.89%, followed by globulin hydrolysate at 71.84%, while prolamin hydrolysate and glutelin hydrolysate showed lower inhibition rates. The peptides with the highest inhibition rate were then isolated from AH using gel filtration chromatography and reversed-phase high-performance liquid chromatography, and identified using nanoscale high-performance liquid chromatography-tandem mass spectrometry. After isolation and purification, 42 ACE inhibitory peptides were identified in the fraction with the highest inhibition rate, 14 of which were completely novel discoveries in this study. These 14 peptides showed potent ACE inhibitory effects through computer analysis. CONCLUSION: Tartary buckwheat albumin can be used as a good source of ACE inhibitory peptides and can be further developed and utilized as edible supplements or drugs. © 2023 Society of Chemical Industry.


Subject(s)
Fagopyrum , Globulins , Angiotensin-Converting Enzyme Inhibitors/chemistry , Fagopyrum/metabolism , Protein Hydrolysates/chemistry , Peptides/chemistry , Albumins , Peptidyl-Dipeptidase A/chemistry , Hydrolysis , Glutens , Angiotensins
8.
Food Funct ; 14(3): 1476-1483, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36648420

ABSTRACT

Turtle shell as a food residue of Pelodiscus sinensis (a type of edible aquatic animal) is widely used in Traditional Chinese Medicine for hepatic fibrosis therapy. Previous studies have demonstrated that the peptides (<6 kDa) derived from turtle shells are considered effective components. The protein of turtle shells has important potential as a source of bioactive peptides which may play a role as ingredients in functional foods. In the present study, the protein of turtle shell was hydrolyzed using a two-enzyme combination. It was found that the hydrolysates obtained by a combination of pepsin and trypsin showed the highest anti-liver fibrosis activity relative to other combinations in a cell viability assay. The hydrolysates were separated and purified by ultra-filtration (<6 kDa), gel filtration chromatography (GFC) and high-performance liquid chromatography (HPLC). Subsequently, the sequences of purified peptides were analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). Molecular docking was used to analyze the interaction of these peptides with the transforming growth factor-ß1 (TGF-ß1) receptor. Two (GPPGVPGPGPL, TSLPVPAPV) of these novel peptides displayed lower binding energies to the TGF-ß1 receptor (-8.18 kcal mol-1, -8 kcal mol-1). Finally, the above two peptides were synthesized chemically and their in vitro anti-liver fibrosis activity was verified by MTT assay. Among them, GPPGVPGPGPL showed a better in vitro anti-liver fibrosis activity (IC50: 80.13 µM). We established a method to obtain anti-liver fibrosis peptides from turtle shells by using bioactivity-guided isolation with molecular docking. Turtle shell protein is an excellent source of anti-liver fibrosis peptides which can offer therapeutic and commercial benefits as an ingredient in functional foods.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Turtles , Animals , Angiotensin-Converting Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Hydrolysis , Chromatography, Liquid , Tandem Mass Spectrometry , Peptides/chemistry , Protein Hydrolysates/chemistry , Liver Cirrhosis/drug therapy , Transforming Growth Factor beta
9.
An Acad Bras Cienc ; 94(2): e20201636, 2022.
Article in English | MEDLINE | ID: mdl-35319622

ABSTRACT

Hypertension is a factor that contributes to the risk of chronic diseases. The inhibition of angiotensin-I converting enzyme (ACE) is a useful therapeutic approach to the hypertension treatment. The algae have been an alternative for the production of ACE inhibitory (ACEi) peptides from enzymatic hydrolysis due to their protein-rich biomass. The aim of this study was to systematically review the literature regarding the production, composition and activity of ACEi peptides derived from algae proteins. Systematic database searches identified 648 related articles. Among these, only 14 were selected according to the eligibility criteria to this review. Macroalgae are more studied than microalgae as sources of ACEi peptides. Furthermore, hydrolysates by thermolysin or bromelain exhibited the highest ACEi activity compared to other enzymes. The main features of the peptides with high ACE inhibition are low molecular weight, short amino acids sequence and non-competitive inhibition pattern. In vivo studies using hydrolysates and peptides derived from algae proteins showed antihypertensive activity in spontaneously hypertensive rats (SHR). Thus, it is suggested that ACEi peptides derived from algae can be considered as potential antihypertensive.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Hypertension , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Angiotensins/therapeutic use , Animals , Antihypertensive Agents/chemistry , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Hypertension/drug therapy , Peptides/pharmacology , Rats
10.
J Sci Food Agric ; 102(3): 1085-1094, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34309842

ABSTRACT

BACKGROUND: Hypertension and diabetes are two kinds of senile diseases which often occur simultaneously. The commonly used drugs in clinic may produce certain side effects. Food-derived polypeptide is a kind of polypeptide with great development potential, which has many functions of regulating human physiological function. Beer is rich in nutrition but there are few researches on bioactive peptides in beer. RESULTS: In this study, a rapid virtual screening method was established to obtain bioactive peptides from Tsingtao draft beer. The peptide sequence was analyzed by ultra-performance liquid chromatography-quadrupole-Orbitrap-tandem mass spectrometry (UPLC-Q-Orbitrap-MS2 ), and 50 peptides were identified. Eight peptides with potential biological activities were screened by using Peptide Ranker software and previous literature references. On the basis of absorption prediction, toxicity prediction, and molecular docking analysis, LNFDPNR and LPQQQAQFK were finally confirmed. The molecular docking results showed that two peptides could bind angiotensin-converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV) tightly by hydrogen bonding and hydrophobic interaction. The in vitro activity evaluation results showed that two peptides had obvious ACE and DPP-IV inhibitory activity. CONCLUSION: This study established a method for rapidly screening bioactive peptides from Tsingtao draft beer, screened two ACE and DPP-IV inhibitory peptides in beer and analyzed their active action mechanism. This article may have great theoretical significance and practical value to further explore the health function of beer. © 2021 Society of Chemical Industry.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/chemistry , Beer/analysis , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Drug Evaluation, Preclinical/methods , Peptides/chemistry , Peptidyl-Dipeptidase A/chemistry , Chromatography, High Pressure Liquid , Drug Evaluation, Preclinical/instrumentation , Humans , Hypoglycemic Agents/chemistry , Mass Spectrometry , Molecular Docking Simulation
11.
Nat Prod Res ; 36(17): 4532-4535, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34825625

ABSTRACT

Hypertension has been a significant cause of death due to elevated blood pressure worldwide. The results of molecular docking showed out of selected 40 compounds, chasmanthin (-11.05 kcal/mol), and palmarin (-11.22 kcal/mol) showed strong binding with angiotensin-converting enzyme (ACE) target. The inhibitory action of the selected phytocompounds for ACE protein was also validated by comparing it with the reference drugs, lisinopril (-9.42 kcal/mol), and enalapril (-5.07 kcal/mol). MD simulations study of 100 ns also demonstrated stability of chasmanthin, and palmarin within the active sites of ACE protein. Molecular mechanics generalised born surface area (MMGBSA) analysis of MD trajectories exhibited significant binding of palmarin with ACE (dG Bind= -38.65 ± 2.59 kcal/mol) and chasmanthin (dG Bind= -37.64 ± 2.67 kcal/mol). Drug likeness and pharmacokinetics properties of palmarin and chasmanthin was also found to be permissible, thereby suggesting the use of chasmanthin and palmarin as a novel target inhibitor against ACE protein to combat hypertension.


Subject(s)
Hypertension , Plants, Medicinal , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensins , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Hypertension/drug therapy , Molecular Docking Simulation , Plants, Medicinal/metabolism
12.
Molecules ; 26(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34834066

ABSTRACT

Angiotensin converting enzyme (ACE) plays a crucial role in regulating blood pressure in the human body. Identification of potential ACE inhibitors from medicinal plants supported the idea of repurposing these medicinal plants against hypertension. A method based on ultra-performance liquid chromatography (UPLC) coupled with a diode array detector (DAD) was used for the rapid screening of plant extracts and purified compounds to determine their ACE inhibitory activity. Hippuryl-histidiyl-leucine (HHL) was used as a substrate, which is converted into hippuric acid (HA) by the action of ACE. A calibration curve of the substrate HHL was developed with the linear regression 0.999. The limits of detection and quantification of this method were found to be 0.134 and 0.4061 mM, respectively. Different parameters of ACE inhibitory assay were optimized, including concentration, incubation time and temperature. The ACE inhibition potential of Adhatoda vasica (methanolic-aqueous extract) and its isolated pyrroquinazoline alkaloids, vasicinol (1), vasicine (2) and vasicinone (3) was evaluated. Compounds 1-3 were characterized by various spectroscopic techniques. The IC50 values of vasicinol (1), vasicine (2) and vasicinone (3) were found to be 6.45, 2.60 and 13.49 mM, respectively. Molecular docking studies of compounds 1-3 were also performed. Among these compounds, vasicinol (1) binds as effectively as captopril, a standard drug of ACE inhibition.


Subject(s)
Alkaloids/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Justicia/chemistry , Plant Extracts/pharmacology , Quinazolines/pharmacology , Alkaloids/chemistry , Angiotensin-Converting Enzyme Inhibitors/chemistry , Chromatography, High Pressure Liquid , Drug Discovery , Drug Evaluation, Preclinical , Humans , Molecular Docking Simulation , Plant Extracts/chemistry , Quinazolines/chemistry
13.
Food Funct ; 12(23): 12077-12086, 2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34783331

ABSTRACT

Bioactive peptides exhibiting angiotensin-converting enzyme (ACE) inhibitory effects and extracted from natural foods have potential as healthy and safe therapeutics for high blood pressure. The aim of this study was to isolate and purify ACE inhibitory peptides from rabbit meat protein hydrolysate, to explore the underlying mechanisms by molecular docking, and to evaluate the antihypertensive effects in vivo. A novel ACE inhibitory tetrapeptide Trp-Gly-Ala-Pro (WGAP) was identified and purified from a bromelain hydrolysate. WGAP acted against ACE in a non-competitive manner with an IC50 of 140.70 ± 4.51 µM. It was resistant to enzymatic degradation by pepsin and trypsin in vitro. Molecular docking analysis indicated that WGAP formed stable hydrogen bonds with ACE residues His353, Ala354 and ALA356. In vivo, 100 mg kg-1 WGAP significantly reduced systolic and diastolic blood pressure in hypertensive rats by up to 42.66 ± 2.87 and 28.56 ± 2.71 mmHg, respectively, 4 h after oral administration. ACE inhibitory peptides derived from rabbit meat have potential antihypertensive effects and provide a new route for the exploration of novel hypertension inhibitors and the utilization of rabbit meat.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Antihypertensive Agents , Meat , Protein Hydrolysates/chemistry , Rabbits , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Antihypertensive Agents/chemistry , Antihypertensive Agents/metabolism , Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Hydrogen Bonding , Male , Molecular Docking Simulation , Rats , Rats, Sprague-Dawley
14.
Chem Biodivers ; 18(7): e2100041, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34000101

ABSTRACT

The present study investigates the chemical composition, anti-inflammatory, and antihypertensive activities, in vitro, from extracts of Cuphea lindmaniana and Cuphea urbaniana leaves. The extraction was performed ultrasound-assisted, and UHPLC/MS analysis was in positive mode ionization. The anti-inflammatory activity of the extracts and miquelianin were assayed at concentrations 0.001-10 µg/mL by chemotaxis on rat polymorphonuclear neutrophils. The antihypertensive activity was performed by angiotensin-converting enzyme (ACE) inhibition. From the nineteen proposed compounds, six of them are described for the first time in this genus. The extracts displayed antichemotactic effect with a reduction of 100 % of the neutrophil migration, in vitro, in most concentrations. The ACE-inhibition presented results ranging from 19.58 to 22.82 %. In conclusion, C. lindmaniana and C. urbaniana extracts contain a rich diversity of flavonoids and display in vitro anti-inflammatory and antihypertensive potential. Thus, this study could serve as a scientific baseline for further investigation, on developmental novel products with therapeutic actions.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Anti-Inflammatory Agents/pharmacology , Antihypertensive Agents/pharmacology , Cuphea/chemistry , Neutrophils/drug effects , Plant Extracts/pharmacology , Polyphenols/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/isolation & purification , Angiotensins/antagonists & inhibitors , Angiotensins/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Antihypertensive Agents/chemistry , Antihypertensive Agents/isolation & purification , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Polyphenols/chemistry , Polyphenols/isolation & purification , Rats
15.
Food Funct ; 12(3): 1291-1304, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33439206

ABSTRACT

Pallenis spinosa is a medicinal plant which is used in folk medicine as curative or preventive remedies for various diseases. Individual phenolic compounds from the methanolic extracts of its flowers, leaves and stem were determined by the high performance liquid chromatography method (HPLC) and total phenolic contents (TPC) were evaluated by Folin-Ciocalteu assay. The stability and bioactivity (antioxidant activity, micellar cholesterol solubility, α-amylase, and angiotensin converting enzymes (ACE) inhibitory effects) of these extracts in the gastrointestinal environment was determined before and after their protection in hydroxypropylmethylcellulose (HPMC) capsules. HPLC analysis revealed the presence of thirteen phenolic compounds with nine flavonoids and four phenolic acids. Except for kaempferol, the twelve other compounds have not been previously detected in the aerial part of the studied plant. Quantification of phenolics by HPLC and Folin Ciocalteu methods revealed that the highest TPC was detected in the flower extracts (104.31 ± 0.80 and 145.73 ± 0.48 mg EGA per g of extract, respectively). Leaf extracts displayed the best antioxidant capacity against the two tested radicals DPPH and ABTS (IC50 = 1.24 ± 0.03 and 0.94 ± 0.02 mg mL-1, respectively), FRAP assay (IC50 = 0.50 ± 0.02 mg mL-1), α-amylase inhibitory (IC50 = 1.25 ± 0.00 mg mL-1) and angiotensin activity with an inhibitory percent of 30.10 ± 0.12%. The best activity shown by stem extracts was against micellar cholesterol solubility (67.57 ± 0.00%). A strong decrease in TPC and their bioactivity was observed after the gastrointestinal digestion (GID) in non encapsulated extracts. These results showed that P. spinosa is a good source of phenolic compounds and GID affects significantly their composition, content and bioactivity.


Subject(s)
Asteraceae/chemistry , Phenols/pharmacology , Plant Extracts/pharmacology , Plants, Medicinal , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Flowers/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Phenols/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Stems/chemistry
16.
Food Chem ; 334: 127565, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32717686

ABSTRACT

The chemical composition, antioxidant activity (AA), cytotoxic activity, antihemolytic effects, and enzyme inhibition (EI) of lyophilized jabuticaba (Myrciaria jaboticaba) seed extract (LJE) was studied. The main compounds found were castalagin, vescalagin, procyanidin A2, and ellagic acid. LJE was more toxic to cancer cells than to normal cells, meaning relative toxicological safety. This cytotoxic effect can be attributed to the pro-oxidant effect observed in the reactive oxygen species (ROS) generation assay. LJE inhibited α-amylase, α-glucosidase, and ACE-I activities and protected human erythrocytes from hemolysis. LJE was incorporated into yogurts at different concentrations and the total phenolic content, AA, and EI increased in a dose-dependent manner. LJE-containing yogurt presented 86% sensory acceptance. The yogurt was administered to Wistar rats bearing cancer and it modulated the gut bacterial microbiota, having a prebiotic effect. LJE is a potential functional ingredient for food companies looking for TPC, AA, and prebiotic effect in vivo.


Subject(s)
Colonic Neoplasms/drug therapy , Gastrointestinal Microbiome/drug effects , Myrtaceae/chemistry , Polyphenols/pharmacology , Yogurt , 1,2-Dimethylhydrazine/toxicity , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Catechin/analysis , Catechin/pharmacology , Colonic Neoplasms/chemically induced , Colonic Neoplasms/microbiology , Humans , Hydrolyzable Tannins/analysis , Hydrolyzable Tannins/pharmacology , Male , Phenols/analysis , Plant Extracts/analysis , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polyphenols/analysis , Proanthocyanidins/analysis , Proanthocyanidins/pharmacology , Rats, Wistar , Seeds/chemistry , alpha-Amylases/antagonists & inhibitors
17.
Biotechnol Appl Biochem ; 68(2): 221-229, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32249982

ABSTRACT

Plain and Lycium barbarum yogurt were made in the presence and absence of fish collagen. Yogurt samples were analyzed for acidification, milk protein proteolysis, angiotensin I-converting enzyme (ACE) inhibitory activity, and sensory evaluation during refrigerated storage for up to 21 days. The o-phthaldialdehyde peptides amount of L. barbarum yogurt both in the presence and absence of fish collagen were significantly increased during 14 days of storage. SDS-PAGE showed improvement in whey proteins degradation of L. barbarum yogurt with/without fish collagen after 3 weeks of storage. L. barbarum yogurt in absence of fish collagen was acting as a great ACE inhibitor reached up to 85% on day 7 of storage. The incorporation of L. barbarum and/or fish collagen affected to a small extent the overall sensory characteristics of yogurt. Yogurt supplemented with L. barbarum and/or fish collagen may lead to the improvement in the production and formulation of yogurt differing in their anti-ACE activity.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/chemistry , Collagen/chemistry , Fish Proteins/chemistry , Lycium/chemistry , Milk Proteins/chemistry , Plant Extracts/chemistry , Proteolysis , Yogurt , Animals , Fishes
18.
Molecules ; 25(18)2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32942707

ABSTRACT

Tomato (Solanum lycopersicum) is a widely consumed fruit all around the world. The industrial exploitation of tomato generates a lot of waste. Most of the utilization of tomato seeds waste is focused on animal feeding, as well as a food ingredient aimed to increase the protein content, and raw material for some organic bioactive component extraction. The aim of this work was to evaluate the techno-functional properties of tomato seed meal (TSM) and its nutraceutical properties after applying defatting processing (TSMD), and to evaluate the nutraceutical properties after a fermentation processing (TSMDF) by Lactobacillus sp. The results showed that, at alkaline conditions (pH 8-9), the techno-functional properties for TSM and TSMD improved. In comparison with TSM, TSMD showed higher water holding capacity (WHC ≈32%), higher oil holding capacity (OHC ≈13%), higher protein solubility (49-58%), more than 10 times foaming activity (FA), more than 50 times foam stability (Fst), as well as an improved emulsifying activity (EA) and emulsion stability (Est) wich were better at pH 9. Regarding the nutraceutical properties, after 48 h of fermentation (TSMDF), the antioxidant activity was doubled and a significant increase in the iron chelating activity was also observed. During the same fermentation time, the highest angiotensin-converting enzyme inhibition (ACEI) was achieved (IC50 73.6 µg/mL), more than 10 times higher than TSMD, which leads to suggest that this fermented medium may be a powerful antihypertensive. Therefore, the strategy proposed in this study could be an option for the exploitation of tomato wastes.


Subject(s)
Dietary Supplements/analysis , Solanum lycopersicum/chemistry , Angiotensin-Converting Enzyme Inhibitors/chemistry , Antioxidants/chemistry , Batch Cell Culture Techniques , Emulsifying Agents/chemistry , Hydrogen-Ion Concentration , Kinetics , Lactobacillus/growth & development , Solanum lycopersicum/metabolism , Seeds/chemistry , Seeds/metabolism
19.
Molecules ; 25(17)2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32858788

ABSTRACT

Hypertension (HT) is considered to be a potential risk factor for cardiovascular diseases and has been directly related to pathologies such as obesity and dyslipidemias. Angiotensin-converting enzyme inhibitors (ACEIs) blocked the renin-angiotensin-aldosterone cascade diminishing the production of angiotensin II and the level of bradykinin, produced by the kallikrein-kinin system. Although ACEIs are effective therapeutics in regulating HT, they present several side-effects that can be due to their mechanism of action (as hypotension, cough, dizziness, light-headedness or hyperkalemia) to specific drug molecular structure (skin rash, neutropenia and tasting disorders) or due to associated pathologies in the patients (it has been considered a possible nephrotoxic effect when ACEIs are administered in combination with angiotensin receptor blockers, in patients that present comorbidities as diabetes, acute kidney injury or chronic kidney disease). Therefore, it is necessary the searching for new products with ACEI activity that do not produce side effects. Interestingly, species of the plant genus Salvia have been found to possess hypotensive effects. In the present study, we analyzed the effects of the ethanolic extract of Salvia hispanica L. seeds (EESH) on the expression of genes involved in pathways regulating HT. Administration of EESH to hypertensive rats inhibited the angiotensin-converting enzyme (ACE) activity along with a decrease in Ace and elevation of Agtr1a and Nos3 gene expression, as compared to that in healthy rats. Moreover, these results were similar to those observed with captopril, an antihypertensive drug used as a control. No significant change in the expression of Bdkrb2 gene was observed in the different groups of rats. To conclude, our results demonstrate that EESH regulates blood pressure (BP) in hypertensive rats through transcriptionally regulating the expression of genes that participate in different pathways involving ACE.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Antihypertensive Agents , Blood Pressure/drug effects , Drugs, Chinese Herbal , Gene Expression Regulation/drug effects , Salvia/chemistry , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Antihypertensive Agents/chemistry , Antihypertensive Agents/pharmacology , Camphanes , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Male , Panax notoginseng , Peptidyl-Dipeptidase A/metabolism , Rats , Rats, Wistar , Salvia miltiorrhiza
20.
Molecules ; 25(10)2020 May 14.
Article in English | MEDLINE | ID: mdl-32422967

ABSTRACT

Hibiscus species (Malvaceae) have been long used as an antihypertensive folk remedy. The aim of our study was to specify the optimum solvent for extraction of the angiotensin-converting enzyme inhibiting (ACEI) constituents from Hibiscus sabdariffa L. The 80% methanol extract (H2) showed the highest ACEI activity, which exceeds that of the standard captopril (IC50 0.01255 ± 0.00343 and 0.210 ± 0.005 µg/mL, respectively). Additionally, in a comprehensive metabolomics approach, an ultra-performance liquid chromatography (UPLC) coupled to the high resolution tandem mass spectrometry (HRMS) method was used to trace the metabolites from each extraction method. Interestingly, our comprehensive analysis showed that the 80% methanol extract was predominated with secondary metabolites from all classes including flavonoids, anthocyanins, phenolic and organic acids. Among the detected metabolites, phenolic acids such as ferulic and chlorogenic acids, organic acids such as citrate derivatives and flavonoids such as kaempferol have been positively correlated to the antihypertensive potential. These results indicates that these compounds may significantly contribute synergistically to the ACE inhibitory activity of the 80% methanol extract.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/chemistry , Antihypertensive Agents/chemistry , Hibiscus/chemistry , Liquid-Liquid Extraction/methods , Methanol/chemistry , Peptidyl-Dipeptidase A/chemistry , Solvents/chemistry , Angiotensin-Converting Enzyme Inhibitors/isolation & purification , Antihypertensive Agents/isolation & purification , Chlorogenic Acid/chemistry , Chlorogenic Acid/isolation & purification , Chromatography, High Pressure Liquid , Citric Acid/chemistry , Citric Acid/isolation & purification , Coumaric Acids/chemistry , Coumaric Acids/isolation & purification , Enzyme Assays , Humans , Kaempferols/chemistry , Kaempferols/isolation & purification , Metabolome , Peptidyl-Dipeptidase A/metabolism , Plant Extracts/chemistry , Quinic Acid/analogs & derivatives , Quinic Acid/chemistry , Quinic Acid/isolation & purification , Secondary Metabolism/physiology , Solutions , Structure-Activity Relationship , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL